Desktop Metal Launches 316L Stainless Steel for Medical, Extreme Temperature, Highly Corrosive and Marine-Grade Environments

316L Joins Desktop Metal’s Expanding Metal 3D Printing Materials Library for the Studio System

BURLINGTON, Mass. — (BUSINESS WIRE) — February 13, 2019 — Desktop Metal, a company committed to making metal 3D printing accessible to manufacturers and engineers, today announced the launch of 316L stainless steel for the Studio System™, the world’s first and only office-friendly metal 3D printing system for prototyping and low volume production. A fully austenitic steel known for its corrosion resistance and excellent mechanical properties at extreme temperatures, 316L is well-suited for applications in the most demanding industrial environments, including salt water in marine applications, caustic cleaners found in food processing environments, and chemicals in pharmaceutical manufacturing.

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20190213005171/en/

Finger splints for medical use cannot be customized to improve fit.  Now, by 3D printing in 316L sta ...

Finger splints for medical use cannot be customized to improve fit. Now, by 3D printing in 316L stainless steel, ring splints can be custom-printed, on-demand to the desired size, with the added benefit of an aesthetic finish and increased durability. (Photo: Business Wire)

“The addition of 316L enables engineers to print metal parts for a wide range of applications, including engine parts, laboratory equipment, pulp and paper manufacturing, medical devices, chemical and petrochemical processing, kitchen appliances, jewelry and even cryogenic tools and equipment,” said Ric Fulop, CEO and co-founder of Desktop Metal. “Teams are now able to iterate quickly on 316L prototypes, print complex geometries that are not possible with most manufacturing methods, and produce end use parts cost-effectively.”

Early applications of 316L parts printed with the Studio System confirm the diverse and promising results across multiple industries:

  • Combustion fuel nozzle for marine tankers
    The UHT Atomizer, manufactured by John Zink Hamworthy Combustion, is a fuel oil atomizer for use with atomizing medium such as steam or air. It is typically installed in an HXG marine burner which are used on steam propulsion boilers on LNG tankers. The objective of the atomizer is to improve low load burner performance, thus allowing the burner to run on a lower fuel oil throughput, saving operational costs when the vessel is maneuvering in port. 316L stainless steel has been a key material for the part due to its excellent mechanical properties at high temperatures. Printed with the Studio System, the atomizer can be radically redesigned to function in a more fuel-efficient manner than those produced through traditional metalworking means.

    “Unlike many of the parts that John Zink designs and manufactures, this UHT Atomizer can only be fabricated utilizing additive manufacturing. Design constraints of casting, machining and other methods that have bound our thinking for decades can be eliminated as additive manufacturing technology continues to evolve and progress,” said Paul Newman, General Manager at John Zink Hamworthy Combustion, UK.
  • Customized ring splint for medical use
    Ring splints, a common medical device, are designed to immobilize or limit the range of motion of injured limbs. Ring splints are typically made of injected-molded plastic in standard sizes and parts often break after a relatively short lifetime. Due to traditional manufacturing methods, finger splints cannot be customized to improve fit. Now, by 3D printing in 316L, ring splints can be custom-printed, on-demand to the desired size, with the added benefit of an aesthetic finish and increased durability.

    “Being able to 3D print medical grade steel parts like this finger splint, which is customized to the patient anatomy, offers many advantages as compared to previous fabrication methods that take longer and may have lower efficacy,” said Jim S. Wu, MD, Chief of Musculoskeletal Radiology and Intervention at Beth Israel Deaconess Medical Center, and Associate Professor at Harvard Medical School.
  • Impeller for harsh environments
    Commonly used across a variety of industries, impellers are an essential component of pumps to move fluid through systems. Impellers require complex vanes to optimize pressures in the pump for different fluids and applications. With chemical impellers, 316L is the choice material for its chemical resistance and mechanical properties at extreme temperatures, such as those found in cryogenic, salt water, and petroleum pumps. The impellers are geometrically complex, with prototypes typically costing $1,000 or more. With the Studio System, this impeller was printed in 316L for $70.

    “The oil and gas industry will be a major beneficiary of advances in metal 3D printing,” said Ahmad Khowaiter, Chief Technology Officer of Saudi Aramco. “As the world’s premier energy and chemicals company and an early investor in Desktop Metal we look forward to advancing the state of the art and developing next generation applications where additive manufacturing can leapfrog existing manufacturing methods.”

“As innovative companies across multiple industries adopt metal 3D printing, it's critical to help accelerate this growth by expanding the portfolio of desired materials,” said Fulop. “Our materials science team is pushing the boundaries to enable printing metal parts for a growing range of applications in as wide a material portfolio as possible. The introduction of 316L is another step on our path to fundamentally change the way metal parts are designed and manufactured.”

1 | 2  Next Page »



© 2025 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us
ShareCG™ is a trademark of Internet Business Systems, Inc.

Report a Bug Report Abuse Make a Suggestion About Privacy Policy Contact Us User Agreement Advertise