TI unveils industry's first GaN IPM to enable smaller, more energy-efficient high-voltage motors

News highlights

DALLAS, June 11, 2024 — (PRNewswire) — Texas Instruments (TI) (Nasdaq: TXN) today introduced the industry's first 650V three-phase GaN IPM for 250W motor drive applications. The new GaN IPM addresses many of the design and performance compromises engineers typically face when designing major home appliances and heating, ventilation and air-conditioning (HVAC) systems. The DRV7308 GaN IPM enables more than 99% inverter efficiency, optimized acoustic performance, reduced solution size and lower system costs. It is on display at the Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM) Conference, held June 11-13 in Nuremberg, Germany.

For more information, see ti.com/DRV7308.

"Designers of high-voltage home appliances and HVAC systems are striving to meet higher energy-efficiency standards to support environmental sustainability goals around the world," said Nicole Navinsky, Motor Drives business unit manager at TI. "They are also addressing consumer demand for systems that are reliable, quiet and compact. With TI's new GaN IPM, engineers can design motor driver systems that deliver all of these expectations and operates at peak efficiency."

Improve system efficiency and reliability with TI GaN
Worldwide efficiency standards for appliances and HVAC systems such as SEER, MEPS, Energy Star and Top Runner are becoming increasingly stringent. The DRV7308 helps engineers meet these standards, leveraging GaN technology to deliver more than 99% efficiency and improve thermal performance, with 50% reduced power losses compared to existing solutions.

In addition, the DRV7308 achieves industry-low dead time and low propagation delay, both less than 200ns, enabling higher pulse-width modulation (PWM) switching frequencies that reduce audible noise and system vibration. These advantages plus the higher power efficiency and integrated features of the DRV7308 also reduce motor heating, which can improve reliability and extend the lifetime of the system.

To learn more about the benefits of GaN technology, read the white paper, "How three-phase integrated GaN technology maximizes motor-drive performance."

Advanced integration and high power density reduce solution size and costs
Supporting the trend of more compact home appliances, the DRV7308 helps engineers develop smaller motor drive systems. Enabled by GaN technology, the new IPM delivers high power density in a 12mm-by-12mm package, making it the industry's smallest IPM for 150W to 250W motor-drive applications. Because of its high efficiency, the DRV7308 eliminates the need for an external heatsink, resulting in motor drive inverter printed circuit board (PCB) size reduction of up to 55% compared to competing IPM solutions. The integration of a current sense amplifier, protection features and inverter stage further reduces solution size and cost.

To learn about designing more efficient, compact motor systems, see the GaN IPM page on TI.com.

This high-efficiency, high-voltage GaN IPM is the latest example of TI innovations to help solve engineering challenges and transform motor designs.

TI's reliable high-voltage technology at PCIM 2024
Visitors to PCIM can see new products and solutions from TI that are enabling the transition to a more sustainable future with reliable high-voltage technology in Hall 7, Booth 652. In addition to the DRV7308 GaN IPM, TI highlights at PCIM include:

  • Next-generation electric vehicle (EV) propulsion system: TI is demonstrating a new 800V, 750kW SiC-based scalable traction inverter system for EV six-phase motors, in collaboration with EMPEL Systems. The demonstration features high power density and efficiency using TI's high-performance isolated gate drivers, isolated DC/DC power modules and Arm® Cortex®-R MCUs.
  • TI's manager of high-voltage power systems applications, Sheng-Yang Yu, will speak on June 11 in the Markt & Technik panel discussion: "Will SiC ultimately Hold its Own against GaN?"
  • TI's manager of renewable energy systems, Harald Parzhuber, will speak on June 12 in Bodo's Power Systems panel discussion: "GaN Wide Bandgap Design, the Future of Power."

For more information about all of TI's speakers and demonstrations at PCIM, see ti.com/PCIM.

Available today on TI.com
Pre- production quantities of the DRV7308 three-phase, 650V integrated GaN IPM are available for purchase now on TI.com.

  • Pricing starts at US$5.50 in 1,000-unit quantities.
  • Available in a 12mm-by-12mm, 60-pin quad flat no-lead (QFN) package.
  • The DRV7308EVM evaluation module is also available at US$250.
  • Multiple payment, currency and shipping options are available.

About Texas Instruments
Texas Instruments Incorporated (Nasdaq: TXN) is a global semiconductor company that designs, manufactures, tests and sells analog and embedded processing chips for markets such as industrial, automotive, personal electronics, communications equipment and enterprise systems. At our core, we have a passion to create a better world by making electronics more affordable through semiconductors. This passion is alive today as each generation of innovation builds upon the last to make our technology more reliable, more affordable and lower power, making it possible for semiconductors to go into electronics everywhere. Learn more at TI.com.

Trademarks
All registered trademarks and other trademarks belong to their respective owners.

 

Cision View original content to download multimedia: https://www.prnewswire.com/news-releases/ti-unveils-industrys-first-gan-ipm-to-enable-smaller-more-energy-efficient-high-voltage-motors-302168545.html

SOURCE Texas Instruments

Contact:
Company Name: Texas Instruments
Teresa Zuech, Golin
Email Contact Nabeela Iqbal, Texas Instruments
Email Contact (Please do not publish these email addresses.)
Financial data for Texas Instruments




© 2025 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us
ShareCG™ is a trademark of Internet Business Systems, Inc.

Report a Bug Report Abuse Make a Suggestion About Privacy Policy Contact Us User Agreement Advertise