The model, named Artemis, includes both track and cross-track wheel stresses and torques as the wheels interact with terrain elements and sink into deformable soils. A single wheel model was also developed to better understand wheel-terrain interactions before simulating Opportunity's full six wheel drive system and complex rocker-bogie suspension system. The model is being validated with single wheel experiments and "Mars Yard" data using an engineering model of the rover driving over various terrains to simulate flight telemetry.
Opportunity Mars flight data are also being examined and compared to model results. Results examined include ripple crossing experiments in Meridiani Planum in which wheel sinking approached 5 cm and slippage 58%; hill climbing on bedrock thinly covered with soils, and skidding encountered when Opportunity drives down a soil-covered hill. The intent is to have a validated model available to simulate drives across the sloping and soil covered terrains when Opportunity reaches the rim of the ancient 20 km wide Endeavour crater. The rim exposes rocks older than any examined from the surface of Mars, and the steep, soil-covered slopes are expected to present mobility challenges.
Monte Carlo approaches will be used with MD Adams to simulate drives and path planning in order to choose the lowest risk way points to the ancient outcrops. The simulations will provide a new "tool" for selecting drive directions that minimize the probability of encountering conditions hazardous to Opportunity.
Professor Raymond Arvidson, Director of the Earth and Planetary Remote Sensing Laboratory at the Washington University in St. Louis says, "MD Adams has enabled us to move quickly in developing a fully dynamic model for the Opportunity rover with realistic wheel-soil interactions. The fully dynamic approach is the only way I can see for modeling actual telemetry from the rover during its drives, since there are six driving wheels and a complex suspension system that causes the wheel drive actuators to interact in non-intuitive ways to keep the rover on its course."
"We are very proud to be involved in such a cutting edge project such as Artemis," said David Yuen, Senior Vice President, Americas at MSC Software. "We are confident that our software and know-how will provide significant value to NASA and Professor Arvidson in the realization of Opportunity."
About Raymond E. Arvidson, Ph.D.
Raymond Ernst Arvidson, Ph.D. is recognized as a James S. McDonnell Distinguished University Professor at the Washington University in St. Louis. He holds a doctorate degree from Brown University and has authored several research publications on the topic of planetary geology. He is currently the Director of the Earth and Planetary Remote Sensing Laboratory, which is heavily involved in several integral aspects of NASA's planetary exploration endeavors such as developing science objectives and plans for missions, participating in mission operations and data analysis, and archiving and distributing data relevant to characterizing and understanding planetary surfaces and interiors. For more information, visit: Earth and Planetary Remote Sensing Laboratory at
http://wufs.wustl.edu/eprsl/ and Planetary Data System Geosciences Node at
http://pds-geosciences.wustl.edu/.
About MSC Software
MSC Software is the worldwide leader of multidiscipline simulation solutions that help companies improve quality, save time and reduce costs associated with designing and testing manufactured products. MSC Software works with thousands of companies worldwide to develop better products faster with simulation technology, software, and services. MSC Software is a global company with offices in 20 countries. For additional information about MSC Software's products and services, please visit www.mscsoftware.com.
The MSC Software corporate logo, Simulating Reality, Adams, Dytran, Easy5, Marc, MD Adams, MD Nastran, Patran, Mentat, OpenFSI, MSC, MSC Masterkey, MSC Nastran, Mvision, SimDesigner, SimManager, and SimXpert are trademarks or registered trademarks of the MSC Software Corporation in the United States and/or other countries. NASTRAN is a registered trademark of NASA. All other trademarks belong to their respective owners.
Press Contact Leslie Rickey Email: Email Contact